Answer Key

+2 PHYSICS - ELECTROSTATICS - UNIT TEST 1
Part I

1	2	3	4	5	6	7	8	9	10
b	c	d	b	b	b	d	d	b	d
11	12	13	14						
d	a	c	c						

Part II

$\begin{gathered} \mathrm{Q} . \\ \mathrm{No} \end{gathered}$	Content	Mark	Tot
15	One coulomb is defined as the quantity of charge, which when placed at a distance of 1 metre in air or vacuum from an equal and similar charge, experiences a repulsive force of $9 \times 10^{9} \mathrm{~N}$.	3	3
16	Electrostatic shielding it is the process of isolating a certain region of space from external field. It is based on the fact that electric field inside a conductor is zero.	2	3
17	The metal body of the bus provides electrostatic shielding, where the electric field is zero. During lightning the electric discharge passes through the body of the bus.	1 1 1	3
18	Polar Molecules explanation Eg. $\mathrm{N}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{NH}_{3}$. Non polar molecule explanation. Example: $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2}$.	$\begin{array}{\|l\|} \hline 1 \\ 1 / 2 \\ 1 \\ 1 / 2 \\ \hline \end{array}$	3
19	The alignment of the dipole moments of the permanent or induced dipoles in the direction of applied electric field is called polarisation or electric polarisation.	3	3
20	Three Uses	3×1	3
21	If all the points of a surface are at the same electric potential, then the surface is called an equipotential surface. If the charge is to be moved between any two points on an	3	3

	equipotential surface through any path, the work done is zero. Hemce electric lines of force must be normal to an equipotential surface		
22	$\mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r}$ (or) $\lambda=\mathrm{E} \times 2 \pi \varepsilon_{0} \mathrm{r}$ Substitution $\lambda=10^{-7} \mathrm{Cm}^{-1}$ (Answer +Unit$)$	1	
23	$\phi=\frac{q}{\varepsilon_{0}}$ $\phi=10^{6} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ Flux through each face $=\frac{10^{6}}{6}$ $=1.67 \times 10^{5} \mathrm{Nm}^{2} \mathrm{C}^{-1}$	1	3

Part III

$\begin{gathered} \text { Q. } \\ \text { No. } \end{gathered}$	Content	$\begin{gathered} \mathrm{Mar} \\ \mathrm{k} \end{gathered}$	Tot al
24	Five Properties	5×1	5
25	Diagram Explanation $\mathrm{dV}=-\mathrm{E} \mathrm{d} x$ and $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{x^{2}}$ The electric potential at the point P due to the charge $+q$ is the total work done in moving a unit positive charge from infinity to that point. $V=-\int_{\infty}^{r} \frac{q}{4 \pi \varepsilon_{0} x^{2}} \cdot d x=\frac{q}{4 \pi \varepsilon_{0} r}$	1 1 1 1 1	5
26	Diagram Explanation $\begin{aligned} & \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \\ & v_{1}=\frac{q}{c_{1}} ; v_{2}=\frac{q}{c_{2}} ; v_{3}=\frac{q}{c_{3}} \\ & v=\frac{q}{c_{5}} \\ & \frac{1}{c_{5}}=\frac{1}{c_{1}}+\frac{1}{c_{2}}+\frac{1}{c_{3}} \end{aligned}$	1 1 $1 / 2$ 1 $1 / 2$ 1	5
27	$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$ Substitution \& solving q_{1} and q_{2} $\begin{gathered} q_{1}=8 \times 10^{-6} \mathrm{C}, \\ q 2=-2 \times 10^{-6} \mathrm{C} \end{gathered}$	$\begin{aligned} & 1 \\ & 3 \\ & 1 \end{aligned}$	5

	(OR)		
	$\mathrm{C}=\frac{\varepsilon_{0 A}}{D}$	1	
	Substitution	$1 / 2$	
	$\mathrm{C}=3.186 \times 10^{-11} \mathrm{~F}$	1	
	Energy $=1 / 2 \mathrm{CV}^{2}$	1	
	Substitution	$1 / 2$	
	Energy $=2.55 \times 10^{-6} \mathrm{~J}$	1	
28	Diagram	1	
	Explanation		
	$\tau=$ One of the forces x	1	
	perpendicular distance between	1	5
the forces			
$\tau=\mathrm{qE} \times 2 \mathrm{~d} \sin \theta=\mathrm{pE} \sin \theta$	1		
	$\vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}$	1	

29	Diagrams Explanation $\begin{aligned} & E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(r^{2}+d^{2}\right)} \text { along BP } \\ & \mathrm{E}_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(r^{2}+d^{2}\right)} \text { along PA } \end{aligned}$ Resolving horizontal \& vertical component explanation $\begin{aligned} & \mathbf{E}=\mathbf{E}_{1} \cos \theta+\mathbf{E}_{2} \cos \theta \text { (alon } \\ & \cos \theta=\frac{d}{\sqrt{r^{2}+d^{2}}} \\ & \text { Upto } \quad \mathbf{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}} \end{aligned}$ The direction of E is along PR, directed opposite to the direction of dipole moment.	$\begin{aligned} & 2 \times 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 / 2 \\ & 2 \\ & 1 / 2 \end{aligned}$	10
30	Diagram Principle Construction Working Reducing leakage of charge used to accelerate positive ions (protons, deuterons) for the purpose of nuclear disintegration.	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	10
31	Gauss's law statement (i) Infinite long straight conductor Diagram Explanation The electric flux (φ) through curved surface $=\oint \mathrm{E}$ ds $\cos \theta$ (or) Total flux through the Gaussian	2 1 $1 / 2$	10

surface, $\varphi=\mathrm{E} .(2 \pi \mathrm{rl})$ The net charge enclosed by Gaussian surface is, $q=\lambda l$ $\mathrm{E}(2 \pi \mathrm{II})=\frac{\lambda l}{\varepsilon_{0}}$ or $\mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} T}$ (ii) Infinite charged plane sheet Diagram Explanation $\begin{aligned} & \phi=\mid \oint E \cdot d s\rfloor_{p}+\lfloor\oint E . d s\rfloor_{p^{1}} \\ &=E A+E A=2 E A \\ & \therefore \mathrm{E}=\frac{\sigma}{2 \varepsilon_{o}} \end{aligned}$	$1 / 2$ 1 1 1 1 1 1	

